Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria.
نویسندگان
چکیده
Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)-reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher-order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch within the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.
منابع مشابه
279. Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes
Dissimilatory Fe(III) reduction is the process in which microorganisms transfer electrons to external ferric iron [Fe(III)], reducing it to ferrous iron [Fe(II)] without assimilating the iron. A wide phylogenetic diversity of microorganisms, including archaea as well as bacteria, are capable of dissimilatory Fe(III) reduction. Most microorganisms that reduce Fe(III) also can transfer electrons ...
متن کاملReductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea.
Studies with a diversity of hyperthermophilic and mesophilic dissimilatory Fe(III)-reducing Bacteria and Archaea demonstrated that some of these organisms are capable of precipitating gold by reducing Au(III) to Au(0) with hydrogen as the electron donor. These studies suggest that models for the formation of gold deposits in both hydrothermal and cooler environments should consider the possibil...
متن کاملRhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III).
To further investigate the diversity of micro-organisms capable of conserving energy to support growth from dissimilatory Fe(III) reduction, Fe(III)-reducing micro-organisms were enriched and isolated from subsurface sediments collected in Oyster Bay, VA, USA. A novel isolate, designated T118(T), was recovered in a medium with lactate as the sole electron donor and Fe(III) as the sole electron ...
متن کاملDissimilatory Fe(III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids.
Dissimilatory Fe(III) reduction is a universal process with irreplaceable biological and environmental importance in anoxic environments. Our knowledge about Fe(III) reduction predominantly comes from pure cultures of dissimilatory Fe(III) reducing bacteria (DFRB). The objective of this study was to compare the effects of glucose and a selection of short organic acids (citrate, succinate, pyruv...
متن کاملEvidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).
Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecologi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 8 شماره
صفحات -
تاریخ انتشار 1996